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Abstract: Recently, a new bi-layer dressing was proposed by Urgo RID to reduce the healing time of
pressure ulcers (PU). This dressing was numerically evaluated in previously published work. In the
current work, the influence on the maximal shear strains of modelling parameters such as the dressing
local geometry, the pressure applied by the gauze inside the wound, the wound deepness, and the
mattress stiffness, was assessed. A sensitivity analysis was performed on these four parameters.
Among all experiments, the mean maximal Green–Lagrange shear strain was 0.29. The gauze pressure
explained 60% of the model response in terms of the volume of tissues under strains of 0.3, while
the wound deepness explained 28%. The mattress had a significant, but low impact, whereas the
dressing local geometry had no significant impact. As expected, the wound deepness was one of the
most influential parameters. The gauze turned out to be more significant than expected. This may be
explained by the large range of values chosen for this study. The results should be extended to more
subjects, but still suggest that the gauze is a parameter that might not be neglected. Care should also
be taken in clinical practice when using gauze that could have either a positive or negative impact on
the soft tissues’ strains. This may also depend on the wound deepness.

Keywords: finite element analysis; pressure ulcers; dressing; soft tissues; internal strains; sensitivity
analysis

1. Introduction

Pressure ulcers (PU) are injuries to the skin and underlying tissues that are common
adverse events in healthcare. For example, in intensive care units, PU prevalence reaches
almost 27% [1]. In any healthcare facility, the risk of developing a PU is increased for
older patients, patients with spinal cord injuries, or comorbidities [2]. PU have terrible
consequences on the quality of life of patients including longer hospitalisation time, social
isolation, and pain [3,4].

PU are localised wounds that propagate in the soft tissues after a detrimental external
loading. They are classified from stage-1, for light wounds, to stage-4, for the most severe
wounds. Short time (some minutes), but intense, load application is sufficient to cause a
PU, while reduced loads applied for an extended period (2 to 4 h) can also lead to this kind
of wound [5]. They have a multifactorial origin, but mechanical loads applied to the tissues
are considered to play a significant role in the onset of PU. Pressure or shear loads applied
at the skin level may lead to significant internal strains [6]. Strains and, more particularly,
the Green–Lagrange maximal shear strains, appeared to be a mechanical biomarker for
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the development of PU [7]. When these strains exceed the cell’s ability to deform, in most
cases under bony prominences, this eventually leads to cell death and the development of
a wound [7–9]. The sacrum is the most affected area of the human body. In this case, the
recommended procedure to treat PU consists of the unloading of the weakened tissues,
which can be tedious to do continuously, particularly if several PU are present. Dressings
are common medical devices used to improve the healing process of PU and a huge range
of products are proposed to clinicians. Yet, the mean healing time of PU is estimated to be
3 weeks and can sometimes exceed 10 weeks [10]. Recently, Urgo RID developed a new
concept of dressing to improve the healing of PU by reducing internal strains. This dressing
consists of two layers, the first one being the classic Urgo Start Plus Border dressing and
the second one consisting of an unloading material. This material is cut into alveoli that
can be removed under the wound to relocate the loads outside of the wound region when
complete unloading of the PU is not temporally possible. The ability of this dressing to
alleviate soft tissues has already been studied previously [11]; however, question marks
remain about the use of the dressing. The impact of the dressing with different wound
deepness, quantities of alveoli removed, or mattress stiffnesses still needs to be estimated.
Furthermore, the interaction with the gauze that is sometimes applied in the wound to
absorb part of the exudate has not been studied yet.

Finite element modelling is a common method applied to compute the soft tissues’
internal strains. Ceelen et al. [12] proposed and validated this method on rat models
for the estimation of the Green–Lagrange maximal shear strains. Yet, few models of the
sacrum region were proposed in the literature [13]. These models were mainly proposed to
compute internal and external stresses in soft tissues without PU. Some studies also applied
the finite element modelling method to evaluate penetrating ulcers in the cardiovascular
domain [14], yet few efforts were made for PU in soft tissues such as skin or adipose
tissues. To the authors’ knowledge, the group of Amit Gefen (Tel Aviv University) was
the only one to propose a finite element model of the injured tissues with a stage-4 PU.
The authors showed that adding a multilayer dressing allowed the reduction of internal
and external stresses around the wound. Several other studies from that group also
performed comparative analyses of the finite element model of the sacrum region with
various dressings or mattresses. They compared the use of silicone foam dressing with
various material parameters and showed that dressings anisotropy helped reduce the
internal and external stresses [15]. In another study, the authors from this group showed
that the increase in mattress stiffness induced an increase in internal stresses [16]. They also
studied various soft cellulose fluff core dressings with two mattress conditions and two
moisture states of the dressings. Few differences could be noted among the dressings, but
better performances were obtained with the softest mattress [17,18]. These studies bring
interesting insights into how the change of boundary conditions may impact the response
of the soft tissue and potentially the onset or propagation of a PU. However, none of the
previous studies reported statistical analysis on the relative importance of the studied
parameters [19]. Furthermore, the gauze inside the wound has still not been modelled.

The current study aims to estimate the relative impact of the dressing geometry,
mattress stiffness, use of gauze, and PU deepness on the soft tissues’ maximal shear strains
around the wound. A sensitivity analysis was performed on these four parameters using a
previously designed parametric model of the sacrum region.

2. Materials and Methods
2.1. Reference Finite Element Model

To reduce the computation time, a parametric approach was adopted. The model
consisted of several layers: the skin, adipose tissues, both dressing layers, and a mattress. The
skin and adipose tissue thicknesses were set to 1.30 mm and 22.30 mm, respectively [19,20].
To simulate a bony prominence on the median crest of the sacrum, an imprint of the sacrum
geometry was approximated by a portion of a sphere with an ellipsoidal volume on top of it.
The adipose tissue thickness was thus reduced to 13.30 mm under the bony prominence. The
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sacrum bone was set as rigid with the pilot node at the centre of the area. A PU from stage-2
to stage-3 was added to the model, with various depths defined after, while the radius
was set to 15.00 mm. The dressing was modelled with two layers referred to as dressing
layer 1 and dressing layer 2 (Figure 1). Dressing layer 1 is the unloading material cut into
alveoli that is in contact with the mattress, and dressing layer 2 is the UrgoStart Plus Border
dressing that is in contact with the skin. Both layers were modelled as a cylindrical layer
with a radius of 125.00 mm. The thickness of dressing layer 2 was set to 3.50 mm, whereas
the thickness of dressing layer 1 was set to 5.20 mm. A mattress with a height of 50.00 mm
was added to the model. The diameter of the model was 250.00 mm to avoid boundary
effects in the wound area. Symmetry in the sagittal plane was also considered so only half
of the model was used for the simulation (Figure 2). All components were meshed with
SOLID185 linear hexahedral elements ANSYS APDL (ANSYS 2020 R2 software, ANSYS
Inc., Cannonsburg, PA, USA) with a mixed pressure-displacement formulation for the soft
tissues. The model was composed, at most, of 6088 elements.
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node of the sacrum area, as illustrated in Figure 2a. Considering the symmetry of the 
model, this corresponded to 47% of the bodyweight of a 94 kg subject [21]. The bottom 
nodes of the mattress were fixed in position. Simulations were performed with ANSYS in 
a quasi-static analysis with an implicit scheme. 

Figure 1. The new dressing design developed by Urgo RID.

The dressing layers were tied together. Tie constraints were also used between the soft
tissue layers and between the skin and dressing layer 2. A coefficient of friction of 0.62 was
defined between dressing layer 2 and the mattress. This value was computed from friction
tests performed at Urgo RID. The dressing, glued on a calibrated weight, was positioned on
a rigid plate cover with a clinical sheet. A gradually increasing force was applied to a cable
attached to the dressing. The coefficient of friction was the ratio of the force that pulled the
dressing and the calibrated weight. Between the skin and the mattress, this coefficient was
set to 0.43 [20]. A vertical force of 217 N was applied to the pilot node of the sacrum area,
as illustrated in Figure 2a. Considering the symmetry of the model, this corresponded to
47% of the bodyweight of a 94 kg subject [21]. The bottom nodes of the mattress were fixed
in position. Simulations were performed with ANSYS in a quasi-static analysis with an
implicit scheme.

Soft tissues were modelled with non-linear hyperelastic isotropic constitutive equa-
tions. More particularly, the skin was modelled with the law proposed by Isihara et al. [22].
The material parameters were optimised using a curve-fitting method from the data of Ni
Annaidh et al. [23]. The adipose tissues were modelled with the equation developed by
Yeoh [24] with parameters fitted according to the data of Sommer et al. [25]. The soft tissue
stiffness was increased close to the wound region, as detailed in Fougeron et al. [11], to
account for the stiffening of the tissues surrounding a PU. The constitutive equation for the
different tissues is:

W =
n

∑
i=1

Ci0
(

I1 − 3
)i
+

n

∑
k=1

1
dk

(J − 1)2k (1)
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d1 = d2 = d3 =
3(1− 2ν)

2C10(1 + ν)
(2)

where W is the strain energy density function, Ci0 the material parameters, I1 the first
deviatoric invariant of the right Cauchy–Green deformation tensor, J the Jacobian of the
deformation gradient, and dk the nearly incompressibility parameters expressed with the
Poisson’s ratio ν by the formula provided by Mott et al. [26]. The indices i and k are between
1 and 3 for the skin and between 1 and 2 for the adipose tissues. Soft tissue stiffening
was considered by multiplying the C10 parameters of the skin and the adipose tissue by a
coefficient of 1.0, 1.5, and 2.0 for the soft, medium, and stiff areas, respectively, as detailed
in Figure 2.
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The value of Poisson’s ratio was set to 0.4999 to account for the nearly incompressibility
of the soft tissues. Dressing layer 2 was modelled with a linear elastic orthotropic material,
whereas layer 1 was defined as a compressible material and modelled with a Blatz–Ko
constitutive equation [27].

W =
µ

2

(
I2

I3
+
√

I3 − 5
)

(3)

where I2 and I3 are the second and third invariants of the right Cauchy–Green deformation
tensor, respectively, and µ is the initial shear modulus.

The initial shear modulus µ of dressing layer 1 and Young’s moduli of dressing layer 2
were computed from compression and tension tests. According to the literature data, the
Poisson ratio of dressing layer 2 was set to 0.2560. The mattress was modelled as a linear
elastic isotropic material with a Poisson ratio of 0.3000 and a reference Young modulus,
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E, of 0.23 MPa. The material parameters are detailed in Table 1. Further details about the
reference model are provided in Fougeron et al. [11].

Table 1. Material parameters of the model’s components.

Component C10 (MPa) C20 (MPa) C30 (MPa) µ (MPa) EX (MPa) EY (MPa) EZ (MPa) d1 (MPa−1) ν

Adipose tissue 1.3 × 10−4 0.0 12.2 × 10−3 - - - - 1.6 0.4999

Skin 2.7 × 10−1 1.9 - - - - - - 0.4999

Dressing layer 1 - - - 1.0 × 10−3 - - - - -

Dressing layer 2 - - - - 4.4 1.8 2.6 × 10−2 - 0.2560

Mattress - - - - 2.3 × 10−1 - - - 0.3000

2.2. Sensitivity Analysis

Principal stretches λ1, λ2, and λ3 were extracted to compute the Green–Lagrange
principal strains (Equation (4)). The maximal shear strain, Eshear, was calculated as detailed
in Equation (5).

Ei =
1
2

(
λi

2 − 1
)

, i ∈ [1, 2, 3] (4)

Eshear =
1
2

max(|E1 − E2|, |E2 − E3|, |E3 − E1|) (5)

Green–Lagrange maximal shear strains are recognised as potential mechanical biomark-
ers to study the onset and development of PU [7]. In the current study, a region of interest
(ROI) was defined for the computation of the strains. The ROI included soft tissues under
the wound and in the perilesional area within three times the radius of the PU. Experiments
performed on rats suggested the possibility to define a threshold of damage that should be
subject-specific [7]. Due to the lack of data on human subjects, the threshold was arbitrarily
fixed to 0.3 considering that Eshear was below this threshold for healthy tissues.

A sensitivity analysis was performed to assess the relative significance of the model
parameters on the volume of healthy tissues. The finite element model was emulated with
a polynomial model detailed after, following the method described by Macron et al. [19], to
investigate the impact of the following parameters on the volume of healthy tissues: wound
deepness, alveoli cutting size, mattress stiffness, and pressure applied by the gauze. The
parameters varied between their minimal and maximal values, as detailed in Table 2. After
normalisation in [−1, 1], experimental points were chosen according to a three-level full
factorial design resulting in 34 combinations (i.e., 81 simulations). Based on the knowledge
of expert clinicians, the wound deepness extrema were set to 1.30 mm and 5.00 mm to
respectively account for a stage-2 and a stage-3 PU. The recommendations from Urgo about
the use of the bi-layer dressing are to remove alveoli around the wound, so this was used
as the mean level of the parameter. Then, a layer of alveoli around the wound was added
or removed to respectively define the minimal and maximal levels (Figure 3). The mattress
stiffness limits were defined according to literature values [16,28]. In the clinical routine,
the pressure applied by the gauze may significantly vary depending on its saturation in
fluid and on the person who inserts the gauze in the wound. As a consequence, it was
chosen to model the effect of the gauze by the pressure applied on the wound walls rather
than that of the gauze itself. A finite element preliminary study was performed to define
the gauze pressure values. To this end, the volume of healthy tissues was analysed with a
5.0 mm deep PU model for multiple values of pressure between 0.00 MPa and 0.08 MPa. A
local optimum was found at 0.02 MPa. As a consequence, the minimal and maximal values
were set to 0.00 MPa (i.e., no gauze in the wound) and 0.04 MPa.
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Figure 3. Minimal, intermediate, and maximal levels of the alveoli cutting (a) and wound deepness 
(b) parameters. 
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Table 2. Parameters’ minimal, intermediate, and maximal values used as levels for the experimental
points of the sensitivity analysis.

Parameters Minimal Level Intermediate Level Maximal Level

Wound deepness 1.30 mm 3.20 mm 5.00 mm
Alveoli cut Recommended +1 layer Recommended Recommended −1 layer

Mattress stiffness 0.03 MPa 0.23 MPa 0.43 MPa
Gauze pressure 0.00 MPa 0.02 MPa 0.04 MPa

Given that the local finite element model is rather a qualitative model, a full polynomial
model of degree two was considered sufficient to emulate it:

y(θ) = θ0 +
m

∑
i=1

θixi +
m

∑
i=1

θiixi

2

+
m

∑
i=1

∑
j>i

θijxixj (6)

where y is the volume of healthy tissues, m the number of parameters, xi the value of
the ith parameter, and θ the vector of the adjustable coefficients, which was estimated
with ordinary least squares. The value of two for the degree will be further justified in
the results section. The sensitivity of the model to each input (linear term, square, order-
two interaction) can be simply defined as the percentage of variance due to this input.
Assuming, for simplicity, the m = 4 parameters independent and uniformly distributed
in [−1, 1] (i.e., with second- and fourth-order moments of respectively 1/3 and 4/45),
it becomes: 

si = var(θixi) = θi
2var(xi) = θi

2 × 1
3

sii = var(θiixi
2) = θii

2var(xi
2) = θii

2 × 4
45

sij = var(θijxixj) = θij
2var(xi)var(xj) = θij

2 × 1
9

var(y) =
m
∑

i=1
si +

m
∑

i=1
sii +

m
∑

i=1
∑
j>i

sij

(7)

The sensitivities to the ith parameter and to its interaction with parameter j are hence
given by the percentages:

Si =
si + sii
var(y)

, Sji =
sij

var(y)
(8)
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3. Results

This section may be divided by subheadings. It should provide a concise and precise
208 description of the experimental results, their interpretation, as well as the experimental
209 conclusions that can be drawn in Table 3.

Table 3. Parameter coefficients and polynomial model sensitivities (>1%) in decreasing order of
magnitude.

Parameters Coefficients θi and θii or θij Sensitivities Si or Sij (%)

Gauze pressure −3.9, −10.7 60
Wound deepness −4.3, −3.3 28

Wound deepness∗Gauze pressure +4.6 10
Mattress stiffness +1.1, −0.9 1

One may notice that approximately 99% of the model response y was explained by
four parameters: the gauze pressure, the wound deepness, the interaction of the wound
deepness and the gauze pressure, and the mattress stiffness. More particularly, the gauze
pressure explained about 60% of the model response, as illustrated in Figure 4a. Considering
dressing layer 1, this layer was shown to reduce the maximal shear strains on one model
of a stage-2 PU in a previous study. When close enough to the recommended (i.e., plus or
minus one layer of alveoli), the change in the volume of healthy tissues was not significant,
as presented in Figure 4. On the contrary, wound deepness was a significant parameter
that explained 28% of the response (cf. Figure 4). As expected, the interaction of the wound
deepness and the gauze pressure was also important, whereas the mattress stiffness had a
significant, but low impact on the volume of healthy tissues (cf. Figure 4). Extreme values
of gauze pressure seem to have a negative impact on the volume of healthy tissues (cf.
Figure 4), suggesting that an optimal value can be found. Tissues around deep PU tend
to have more important strains (cf. Figure 4) and softer mattresses may not be suitable
in all cases, since the interquartile range of the volume of healthy tissues is larger than
for stiffer mattresses. Worst-case scenarios were defined as the 10% experiments with the
highest peak maximal shear strains. Among these nine experiments, the peak maximal
shear strains were greater than 0.80 and all were designed with the softest mattress and the
maximal gauze pressure with various wound deepness and alveoli cut.

To illustrate the results, Green–Lagrange maximal shear strains in the ROI were plotted
for some experiments in Figure 5.
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Figure 4. Effect of the four parameters on the volume of healthy tissues (i.e., tissues with strains 
lower than 0.3), with the other three parameters being set to their intermediary value. 
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Figure 5. Green–Lagrange maximal shear strains in the ROI of some experiments. All parameters 
were set to the intermediate values except for one that varied according to the defined levels: (a) 
changes in the gauze pressure, (b) changes in the alveoli cut, (c) changes in the wound deepness, 
and (d) changes in the mattress stiffness. The ROI appears in grey in (e). 
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4. Discussion

A new bi-layer dressing has been proposed by Urgo RID to improve the healing of
PU. This dressing has previously been studied to evaluate its mechanical impact on the soft
tissues in one specific scenario. In this case, the use of the dressing allowed the reduction
of internal strains around the wound. Yet, some factors may affect the conclusions: the
dressing alveoli cutting, the pressure applied by the gauze inside the wound, the deepness
of the wound, and/or the stiffness of the mattress. Thereby, the present study aimed
to evaluate the relative importance of these parameters regarding the maximal shear
strains around the PU. A sensitivity analysis was performed following a three-level full
factorial design.

Among all experiments, the mean maximal shear strain was 0.29 and the peak value
reached 0.97. The experiments that reached the highest values of maximal shear strains
were all designed with the softest mattress and the maximal gauze pressure. The strain
values are in range with the previously published results, but are lower than those obtained
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by Macron et al., for whom peak values ranged between 1.42 and 4.14. Macron et al. studied
the strains under the ischial tuberosities in subjects in a sitting position, which may explain
the differences [19]. The computation of the peak maximal shear strain is also local and
thus highly sensitive to mesh quality and model non-linearities. Therefore, the volume of
healthy tissues was preferred here as a discriminant measure for the sensitivity analysis.
The gauze pressure alone explained 60% of the model response, while the wound deepness
and the interaction between the gauze pressure and the wound deepness accounted for
28% and 10% of the response, respectively. To the authors’ knowledge, this study is the
first attempt to assess the impact of these two parameters on the computation of the strains
where they both significantly impacted the results. The mattress also had a significant, but
low impact. Contrary to the previous studies of Linder-Ganz and Gefen [16], the softest
mattress did not necessarily reduce the strains in the ROI. This may be due to the use of
the bi-layer dressing in this particular study, which adds a cushion layer between the soft
tissues and the mattress. Furthermore, the local approach proposed in this study may
not be able to capture the impact of the mattress on a large scale, since weight-bearing
areas are limited here. It is worth noting that the results could be affected by the levels
chosen for the sensitivity analysis. Mattress stiffness is highly dependent on the brand
and few data are provided by the manufacturers. The mattress was modelled with linear
elastic homogeneous isotropic material properties, which may not be appropriate for all
mattress technologies. The use of gauze was modelled as a homogeneous pressure applied
inside the PU. Various products are used by clinicians and the filling of the gauze inside
the wound is highly dependent on the operator and the exudate of the wound. The use of
pressure allows one to model the effect of the gauze without the need to model all types
of commercialised products or operators’ protocols. The wound deepness is a significant
parameter with an important impact, but in the present study, PU 5.3 mm deep at most
were designed. Consequently, the conclusion might not be extrapolated to deeper PU.
Other parameters could also have been included in the sensitivity analysis. A geometrical
description of the PU such as its diameter or the interaction between the PU diameter
and the dressing alveoli cutting could modify the strain distribution. Subject-specific
parameters were also not studied in this work. As detailed by Macron et al. [19], materials
and thicknesses of soft tissues as well as bone geometries may have a significant impact
on strain computation [19]. The material parameters of soft tissues were estimated from
cadaveric tests of the literature. Therefore, the current study does not account for the
variability of the constitutive behaviours that are proposed in the literature [13,29,30]. The
Poisson ratio was also higher than in most literature studies, but this is in range with
the recommendation of Bonet and Wood [29] to be close to incompressibility. The soft
tissue thicknesses were fixed in the current study even though values from 4.0 mm to
33.5 mm were reported by Clark et al. [30]. Yet, considering all of the parameters would
have entailed too many experiments. As a result, it was decided for this study to focus on
one particular case for which the model was previously experimentally evaluated, and to
evaluate the parameters relating to the use of the dressing in this particular environment:
the alveoli cutting, the gauze pressure, the wound deepness, and the mattress stiffness.
The present study was not exhaustive on the studied parameters. Further analyses are
necessary to include subject-specific parameters obtained on healthy subjects, but also on
subjects with PU. The threshold of the strains used to define healthy tissues could also
have an impact on the results. Thus, the same sensitivity analysis was performed with a
threshold of 0.65 as prescribed by Ceelen et al. [7]. Small discrepancies, a few percent, were
noted in terms of sensitivities, but the relative order of the parameters remained the same.

Finally, the results presented here suggest that care should be taken when filling the
wound with gauze. Gauze is important to maintain an optimal environment in the wound,
particularly in terms of moisture. However, gauze should not be crammed into the wound
or filled with too much fluid at the risk of applying too much pressure inside the wound
and thus exacerbating the deformations of already weakened soft tissue. Furthermore,
as was expected, the deeper the wound, the more strains. Even though the unloading of
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soft tissues is always prescribed for PU, special care should be taken when dealing with
stage-2 and higher PU. To consolidate the conclusion, future work will include the transfer
of the proposed modelling on realistic subject-specific geometries of the sacrum and the
heel in several patients. This study is a first attempt to numerically evaluate the effect of
new dressing designs and to potentially propose guidelines to industrials and clinicians for
the use of these medical devices.
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